The triviality of tangent bundle

We present the proof of John Milnor on the following.
Theorem 0.1. The tangent bundle $T \mathbb{S}^{2}$ is non-trivial.
It follows from the following famous Theorem in differential topology.
Theorem 0.2 (simplified version). Suppose v is a smooth vector field on \mathbb{S}^{2}, then X vanishes somewhere.

Proof. By the natural embedding, we can identify $T \mathbb{S}^{2}$ as $\left\{v \in \mathbb{R}^{3}:\langle v, x\rangle=0, \forall x \in \mathbb{S}^{2}\right\}$ where x is understood as the position vector.
Suppose there is smooth vector field $v: \mathbb{S}^{2} \rightarrow T \mathbb{S}^{2}$ such that $|v|=1$ by rescaling. Consider the map $F_{t}: \mathbb{S}^{2} \rightarrow \mathbb{S}_{\sqrt{1+t^{2}}}^{2}$ given by

$$
F_{t}(x)=x+t v(x)
$$

We note that since v is smooth, if $F_{t}(x)=F_{t}(y)$, then

$$
\begin{equation*}
|x-y|=t|v(x)-v(y)| \leq C t|x-y| \tag{1}
\end{equation*}
$$

which implies F_{t} is injective if t is sufficiently small. Extend $v(x)$ on Annulus $A(r, R)$ by $\tilde{v}(x)=|x| \cdot v\left(\frac{x}{|x|}\right)$ for some fixed $r<1<R$. And we extend the map F_{t} to $A(r, R)$ by $F_{t}(x)=x+t \tilde{v}(x)$ for $x \in A(r, R)$.
We claim that $F_{t}\left(\mathbb{S}^{2}\right)=\mathbb{S}_{\sqrt{1+t^{2}}}$. If so, then $F_{t}(A(r, R))=\sqrt{1+t^{2}} \cdot A(r, R)$ by the scaling properties of F. Assuming this is true, then

$$
\begin{align*}
\operatorname{Vol}_{\text {euc }}\left(\sqrt{1+t^{2}} \cdot A(r, R)\right) & =\operatorname{Vol}_{\text {euc }}\left(F_{t}(A(r, R))\right) \\
& =\int_{A(r, R)}\left|d F_{t}\right| d \mu \tag{2}
\end{align*}
$$

where the left hand side is of $\left(1+t^{2}\right)^{3 / 2} \cdot C$ while

$$
\left(F_{t}\right)_{j}^{i}=\delta_{j}^{i}+t \cdot \tilde{v}_{j}^{i}
$$

and hence the integral is in form of polynomial of t which is impossible. Noted that the C^{1} properties of \tilde{v} is nothing but from v (by scaling).

Mistake made in class: the change of coordinate formula is true but not as nice as the above stated form. This is because in local coordinate of sphere, F_{t} is a mess. I overthought this part.

It suffices to prove the claim. The inclusion is trivial, it remains to prove the surjective. Since F_{t} is smooth, $F_{t}\left(\mathbb{S}^{2}\right)$ is compact and hence closed. We claim that F_{t} is a open map on $A(r, R)$. Let U be a open set and $y=F_{t}(x)$ for some $x \in U$. Since $d F_{t} \neq 0$ on $A(r, R)$, Inverse function Theorem implies that F_{t} has a smooth inverse around x which
in particular implies $F_{t}(U)$ is open. And hence, $F_{t}\left(\mathbb{S}^{2}\right)$ is relatively open in $\mathbb{S}_{\sqrt{1+t^{2}}}^{2}$. This proves the claim by connectedness.
It is not difficult to see from the proof that 1 . the dimension is not necessarily 2,2 . the regularity of v is not necessarily smooth.

